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A PAPER [l] containing a new approach to the transport 
properties of turbulent flows is deserving of close attention. 
I have tried to clarify in my own mind what are the distinc- 
tive contributions of this paper, which features of the model 
are essential and which parts of the development are not 
strictly essential to the outcome For example the size, shape 
and initial transverse velocity, V, of the entities caneel out 
when diffusivity ratios are taken and therefore do not 
influence the comparisons made with experimental data. 
Essential characteristics are that an entity moves off im- 
pulsively from its initial position, and thereafter is slowed 
down according to a laminar resistance law. It then follows 
from dimensional analysis that 
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where R is a characteristic linear dimension of an entity. 
This is equivalent to the authors’ 

Reference to an entity of ellipsoidal form is not an essential 
part of the development The laminar resistance law is 
important in that it determines the time spent by the entity 
in traversing each element of its path of transverse length 
L*, and also the distribution along the path of the decay of 
its excess momentum corresponding to U,. 

I was puzzled for a time by the fact that it seemed possible 
to derive a turbulent shear stress, a rate of heat transport, 
etc., apparently without the frequency of creation of entities 
being specified. Despite the preamble to equation (13) one 
cannot define the cont~bution of a single entity to the shear 
stress; it is necessary to specify the rate at which entities are 
crossing unit area of the plane y = 0. What equation (13) 
in fact represents is the shear stress when the entire area of 
the plane y = 0 is being traversed by fluid with transverse 
velocity AV and velocity increment AU. (This is rather 
different from the picture of relatively widely spaced 
entities moving through fluid which has the mean motion). 
The next step is to determine the shear stress when entities 
with a range of AV, from V, to zero, and of AU, share the 
plane y = 0. This development in the paper leads to equation 
(21) and is worth close examination. 

The required integral is an average value of AUAV over 
unit area of the plane y = 0, i.e. 
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where dn is an element of the unit area A relation is re- 
quired between da and dL 

According to the paper “the least prejudiced assignment 
of probability density to the value of (h/A*) when an entity 
crosses the plane y = 0 is that the density is uniform for all 
values of Q/L*) between 0 and 1’: I do not find that an 
obvious proposition. It seems to me more natural to start 
with the postulate that entities are created at the same rate 
throughout the fluid When they cross the plane y = 0 they 
occupy areas inversely proportional to AV in order to 
satis@ the continuity condition, i.e. 

and the above integral (a) becomes 
1 
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However, a new difficulty immediately arises; the expres- 
sion, and therefore the shear stress, is zero. The explanation 
is not hard to find; entities which take an infinite time to 
complete their motion over a transverse distance R* cannot 
produce a finite shear stress. 

It would therefore seem essential to make provision in 
the model for entities to be eliminated after (on average) a 
linite time. An entity will from its moment of creation be 
liable to disappear in a new process of entity production 
It would seem reasonable to assume that the probability of 
termination of any particular entity is uniformly distributed 
in time and the cumulative probability tends to unity as 
the time tends to infinity. Consider the decay of the entity 
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flux n(n) with distance 1 from the plane in which the entities 
are created at a steady rate n, 

n n + dn 

A A +dl 

0 I” 

Then +ln tl entity flux x time of passage over element dl 

i.e. 

n _=I_; 
%I 

and the half-life of the entries is (n*/V,)ln2, which is inde- 
pendent of V, since I* is proportional to V,. 

Returning to the expression (a) above we can now write 

entity flux n(n) from distance L 
da c( --- dl 

transverse velocity (u) 

I-- 

= d ,; 
0 

The outcome is therefore precisely the authors’ equation 
(21) but I, at least, am much clearer about its basis, and the 
process of entity termination has been introduced in a 
specific form 

On a point of detail it would appear that in taking the 
range 0 < I < 1 the authors have only considered entities 
traversing y = 0 in one direction [equation (15)]. Entities 
moving in the other direction would make an identical 
contribution to transport processes However no results are 
affected since each group of entities would occupy only 
half of the plane p = 0. 

Note the square of Prandtl number in the numerator, In 
the paper the error in equation (41) is cancelled out when 
diffusivity ratios are taken as a result of some slight con- 
fusion over dehnitions in that E is used in two distinct senses 
in the paper. The quantities a,, and ar, as defined in equations 
(22) and (42) are not ditfusivities but the turbulent viscosity 
H and thermal conductivity K,. .sp and an should be reserved 
for the diffusivities as used later in equation (47) and Figs. 
7,9 and 10. Thus 

and in this process the index of Prandtl number is reduced 
from 2 to 1 in agreement with equation (47) 

I do not entirely accept the argument in section 5.2 that, 
following the assumption of uniformity of momentum 
within an entity, i.e. solid body motion, it was necessary for 
consistency to assume unifo~ity of tem~rature; it rather 
depends upon the Prandtl number. I strongly suspect that 
the correct justification is that, once the transient heat 
conduction process outside the entity has been included in 
the model, it is immaterial for the purposes of this paper 
whether internal heat conduction is also included or not. 
Similarly, as pointed out in the paper, once viscous effects 
outside an entity have been included, it is immaterial whether 
it is regarded as solid or fluid. 

The physical basis of the curve in Fig 7 is clear; at larger 
Prandtl numbers the entity moves a greater effective dis- 
tance before giving up its thermal energy. 

~RB~ENT ENERGY TRANSPORT 
I am afraid I have missed the argument of this section 5.1. 

The difficulty occurs between equations (24) and (25). 
Equation (24) gives the decay of kinetic energy (per unit 
mass) of an entity moving through a quiescent fluid. Is the 
kinetic energy of the entities related to the (undefined) 
turbulent energy? Is the energy (Uz + r/;: + I@ of an entity 
at creation a measure of the turbulent energy density at its 
position of origin, which would seem to be consistent with 
equation (2S)? My principal dihiculty is to understand how, 
according to equation (25) the entity coming to rest at the 
end of its journey I* has completely adjusted to the turbulent 
energy level of its new surroundings. Perhaps equation (25) 
onwards is to be taken as a series of mathematical steps 
rather than a detailed argument with a physical basis? 

HElAT TRANSPORT 
Equations (41) and (43) are dimensionally incorrect. As PHYSICAL OR MATHRMATICAL MODEL? 

defined in equation (42) sn must bave the dimensions of Consider the problem of physically reconciling the 

thermal conductivity, not viscosity. The inconsistency has assumptions made in the paper, which include : 

arisen between equations (40) and (41), and I believe that 
(a) An entity moves off impulsively yet follows a resistance 

equation (41) should read 
law appropriate to established flow. 

(b) Heat transfer is calculated from a relation established 

QH = f <$‘N:> 
P2 d <Tf> 

for the case of no relative motion between the entity 

1 + 3P($‘IIL) dy 
and its surroundings, which are also at constant 
temperature. 
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(c) Entities are treated as if widely spaced in a fluid whose 
motion is otherwise steady but elsewhere it is accepted 
that every plane perpendicular to the y-axis, and there- 
fore the entire fluid, consists of entities in motion 

There is a natural desire, perhaps felt particularly strongly 
with the turbulence problem, for simple, consistent, compre- 
hensible physical models, even at some risk of over-simpliti- 
cation, but I have sometimes felt that the feasibility of such 
models is not sufficiently distinguished from their desira- 
bility. Physical concepts are most valuable for constructing 
a length of track on which to start in motion a train of 
thought The train tends to become airborne during the 
mathematical development section and when, much further 
on, it comes down on a convenient stretch of track we are 
inclined to ignore the fact that it was ever off the ground, 
and has perhaps, being a well-behaved train, now adjusted 
to a different gauge. At the end of our travel we ought to 
judge the correctness of our journey by the merits of our 
new surroundings, yet we tend also to retain the feeling that 
an additianal recommendation is that it has followed a 
continuous physical line. My view is that the usefulness of 
the theory proposed by Mr. Tyldesley and Professor Silver 
must rest entirely on the correctness of its predictions, and 
that rather more evidence is required than diffusivity ratio 
comparisons, which arc in any case difficult to measure 
accurately. It is general experience that alternative, and 
widely dissimilar, models can all show some initial success 

in predicting observed trends, provided that the basic 
physical laws of the situation have not been completely 
violated I would rather doubt whether there is much more 
to be gained from the statistical mechanics approach to 
turbulent flow, but I will nevertheless await with interest 
further developments of this particular theory. 

V. WALKER 

University of Bradford 
Bradford 7 
England 
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P.S. It has been brought to my attention by Mr. P. Brad&w 
that a further immediate test of the proposed theory can be 
made. It is well known that in a jet and in pipe or boundary- 
layer flow outside the viscous sublayer the eddy diffusivity 
is practically independent of viscosity, whereas according to 
the theory in the paper E, is inversely proportional to n. 
This may well be the most serious objection to the theory 
as it stands. 
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TURBULENT FLUID 
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V.W. 

PROPERTIES OF A 

TYLDESLEV and Sr~vsa @] have presented an interesting 
“rational description” of a turbulent fluid. Their model of 
coherent lumps of fluid, suddenly created, and surrounded 
by fluid having the properties of the mean flow, although it 
is hardly original, may lead to a number of useful qualitative 
conclusions. However when the quantitative analysis of [l] 
is applied to the turbulent flow of gas in a channel for 
example, there is a point at which the argument becomes 
fallacious. This arises from the failure of the treatment to 
evaluate the magnitudes of the length and velocity scales 
involved in the analysis, and it has at least three important 
repercussions. 

Examination of the correlation coefficient of axial velocity 
fluctuations, R,, as measured by Comte-Bellot [2], shows 

that it maintains a value greater than 0.5 for separations, y, 
of up to 0.1 of the channel half-width, h, over almost the 
whole of the flow passage (except for a region close to the 
wall). This indicates that an appropriate value for the 
radius of an “energy-containing entity” is (R) N @l h: 
moreover it is the energy-containing entities that make the 
most significant contribution to the transfer of momentum, 
which is described by the Reynolds stress in equation (13). 
That the authors [l] have overlooked this fact is shown by 
their comparison of equations (8) and (9), suggesting a 
correspondence between (R’)* and the microscale S. The 
microscale, being a measure of turbulent velocity gradients 
and related to the rate of energy dissipation by viscosity, is 
a function of Reynolds number, and is considerably smaller 


